Using machine learning tools for protein database biocuration assistance
نویسندگان
چکیده
منابع مشابه
Mining Protein Database using Machine Learning Techniques
With a large amount of information relating to proteins accumulating in databases widely available online, it is of interest to apply machine learning techniques that, by extracting underlying statistical regularities in the data, make predictions about the functional and evolutionary characteristics of unseen proteins. Such predictions can help in achieving a reduction in the space over which ...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملBiocuration at the Saccharomyces genome database.
Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system pro...
متن کاملMachine learning for metagenomics: methods and tools
Owing to the complexity and variability of metagenomic studies, modern machine learning approaches have seen increased usage to answer a variety of question encompassing the full range of metagenomic NGS data analysis. We review here the contribution of machine learning techniques for the field of metagenomics, by presenting known successful approaches in a unified framework. This review focuse...
متن کاملusing protein interaction database and support vector machine to improve gene signatures for prediction of breast cancer recurrence
background: numerous studies used microarray gene expression data to extract metastasis-driving gene signatures for the prediction of breast cancer relapse. however, the accuracy and generality of the previously introduced biomarkers are not acceptable for reliable usage in independent datasets. this inadequacy is attributed to ignoring gene interactions by simple feature selection methods, due...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-28330-z